Advancing Machine Vision Technology:

Band structure of oxide semiconductors for optical neuromorphic devices to realize highly efficient and accurate machine vision

Seong Jun Kang

Department of Materials Science and Engineering Laboratory for Advanced Nano Technologies Kyung Hee University

• Basic IDEA

- Synaptic behavior from light signal?

• Expanding to vision inspired optical synaptic transistors

- Appropriate electronic band structure for optical synaptic devices
- Pentachromatic-vision inspired optical synaptic transistors

Advancing machine vision technology

- A brief insight into AI vision technology
- In-sensor & in-memory optical synaptic devices for enhancing vision systems and machine learning validation

UVISION Lab

Advanced Functional Materials (2024)

LANT

Outline

• Basic IDEA

- Synaptic behavior from light signal?

• Expanding to vision inspired optical synaptic transistors

- Appropriate electronic band structure for optical synaptic devices
- Pentachromatic-vision inspired optical synaptic transistors

Advancing machine vision technology

- A brief insight into AI vision technology
- In-sensor & in-memory optical synaptic devices for enhancing vision systems and machine learning validation

Appropriate electronic band structure for optical synaptic devices

Multi-band structure exhibits a persistent photocurrent effect, which demonstrates synaptic behavior in response to the optical signals.

Vertically diffused Cd doping process of IGZO

- Cd dopants were uniformly diffused into the IGZO film, and the film density was increased.

Optoelectronic synaptic behavior of the device under the green and blue light stimulation

Excitatory postsynaptic current (EPSC) and paired-pulse facilitation (PPF)

Pentachromatic vision inspired optical synaptic transistor

UV-Vis-NIR pentachromatic vision for vision inspired optical synaptic transistor

Control gap states at the mixed zone of Ag_2O and IGZO

Pentachromatic vision inspired optical synaptic transistor

Excitatory postsynaptic current (EPSC) shows pentachromatic response

Paired-pulse facilitation (PPF) shows synaptic response

- Low working voltage & wide wavelength response (405 nm ~ 830 nm)

4 6 8 10 Time (s)

0 2

0

2 4 6 8 10

Time (s)

6 8 10

24

Time (s)

0

0.5 1.0 1.5 2.0 2.5 3.0

Pulse interval (s)

Advanced Functional Materials 34, 2402222 (2024)

Outline

• Basic IDEA

- Synaptic behavior from light signal?

• Expanding to vision inspired optical synaptic transistors

- Appropriate electronic band structure for optical synaptic devices
- Pentachromatic-vision inspired optical synaptic transistors

Advancing machine vision technology

- A brief insight into AI vision technology
- In-sensor & in-memory optical synaptic devices for enhancing vision systems and machine learning validation

In reality, incidents still occur due to insufficient visual information processing. A new technological paradigm is needed for next-generation visual information recognition system.

기존 기술의 한겨 기존 감지 / 인지 체계 한계 발생 중 실사례 2018.05 2022.10 대량의 시각 Uber 자율주행 테슬라 자율주행 자율주행택시 차량 사고 차량 사고 Cruise 사고 정보 처리 어려움 Woman in downtown San Francisco was seriously iniured in a car accident. She was found under an 데이터 처리 속도 한계 정확도와 효율성 부족 ADLY CRASH WITH SELF-DRIVING U 시장 경쟁력 부족 (출처:관련사고 뉴스기사, 보도자료 발췌)

Optical synaptic device is a key technique for future visual information recognition systems

UVISION Lab

UVISIOn Lab

3

KYUNG HEE UNIVERSITY

20

Image overlapping pre-process via in-sensor & in-memory device

- Need suppressed spike-timing-dependent plasticity (STDP) characteristics and increase spike-number-dependent plasticity (SNDP) to reduce processing image data

UVISION Lab

InGaSnO synaptic device to suppress STDP and increase SNDP

- Strong bonding energy between Sn and O & Slow recombination
- InGaZnO vs. InGaSnO

UVISION Lab

UVISION Lab

Prove the concept via Machine Learning

- 28 x 28 pixels image data input to the machine learning (480,000 images)
- Reduce the training time according to increase the number of overlapped images without change the accuracy

UVISION Lab

KYUNG HEE UNIVERSITY

Prove the concept via Machine Learning

- Image recognition via a device with the STDP (IGZO TFTs).

IGZO (63 %) 1st incorrect image IGZO (63 %) 3rd incorrect image IGZO (63 %) 5th incorrect image IGZO (63 %) 7th incorrect image

IGZO (63 %) 8th incorrect image

Sequence of preprocessed images

ACS Nano 19, 13107 (2025)

Device with the SNDP (InGaSnO) gives more accurate image recognition result

More accurate and fast image recognition system is possible with InGaSnO in-sensor devices!

ACS Nano 19, 13107 (2025)

- We have suggested <u>an appropriate electronic band structure of</u> <u>oxide semiconductor for optical synaptic devices</u>.
- We have demonstrated <u>a pentachromatic vision inspired</u> optical synaptic transistor with 512 conduction states to the <u>light signal</u>.
- More accurate and fast image recognition system is possible with SNDP in-sensor devices!
- We believe that <u>optical synaptic devices could be a key</u> <u>technique for developing fast and accurate machine vision</u>.

Additional information

Lab members

Funding

National Research Foundation of Korea, 중점연구소, Kyung Hee University

Contact information

E-mail: junkang@khu.ac.kr

Homepage: https://lant.khu.ac.kr

UVISION Lab

